

 Navigation

 	
 index

 	
 next |

 	IRCAnywhere alpha documentation

IRCAnywhere

IRCAnywhere is an application written in javascript which is designed to be a free alternative to IRCCloud [https://www.irccloud.com]. With IRCCloud, you have little control over your uptime and the privacy of your users. IRCAnywhere aims to be a replacement giving the control to you.

IRCAnywhere has been around for a while, and was first opened to the public as a proprietary service back in 2012. It got open sourced in May, 2013 and we quickly realised that it wasn’t as simple and stable as it should be. Recently IRCAnywhere has undergone a massive rewrite completely from the ground up with some fundamental changes to the way it previously worked.

This documentation is for the most current versions 0.2-alpha and 0.2-beta. The code is fully open source and available on github [https://github.com/ircanywhere/ircanywhere]. The documentation is currently lacking but expect the project to be fully documented in more stable releases, currently the server side API is documented to an extent which will be improved as the project matures.

Contents:

	Pre Requirements
	Installing Node.js and Npm

	Installing With The Installer

	Installing MongoDB

	Installing IRCAnywhere
	Automatic Install

	Installing

	HTTPS

	Running

	Updating

	Reverse Proxies
	Apache

	Nginx

	Using the module system
	Server Side

	Client Side

	Server API
	Application

	ChannelManager

	CommandManager

	EventManager

	IRCFactory

	IdentdServer

	IRCHandler

	IRCServer

	ModeParser

	Module

	ModuleManager

	NetworkManager

	RPCHandler

	ServerSession

	UserManager

	WebSocket

 Copyright 2014, Ricki Hastings.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	IRCAnywhere alpha documentation

Pre Requirements

IRCAnywhere requires a few tools to be installed before we can start installing the package. The following tools are required to proceed if you have these installed you can skip to the next page;

	nodejs

	npm

	MongoDB

Installing Node.js and Npm

First we’ll install nodejs and npm we recommend latest stable versions as always.

	Fedora

$ sudo yum install nodejs npm -y

	Mac OSX

$ brew install node npm

	Debian/Ubuntu

Latest versions of nodejs include npm aswell.

$ sudo add-apt-repository ppa:chris-lea/node.js
$ apt-get update
$ apt-get install nodejs

If this is not working for any reason, usually something similar to:

Err http://ppa.launchpad.net wheezy/main Sources
404 Not Found

Then I would recommend installing node with nvm [https://github.com/creationix/nvm]

$ curl https://raw.github.com/creationix/nvm/v0.3.0/install.sh | sh
$ nvm install 0.10
$ nvm use 0.10
$ nvm alias default 0.10

Installing With The Installer

In the latest development branch we now have an install script to automate everything past this point. If you’re running in a production environment it’s recommended to install your own global version of MongoDB so if the time comes you’re ready to scale it and secure it. Although if you’re just interested in a quick get up and go then it’s worth skipping to this section.

Installing MongoDB

Next we’ll install MongoDB and set it up correctly.

	Fedora

$ yum install mongo-10gen mongo-10gen-server

You may need to create a /etc/yum.repos.d/mongodb.repo file and add the following to it.

64-bit operating system.

[mongodb]
name=MongoDB Repository
baseurl=http://downloads-distro.mongodb.org/repo/redhat/os/x86_64/
gpgcheck=0
enabled=1

32-bit operating system (not recommended for production).

[mongodb]
name=MongoDB Repository
baseurl=http://downloads-distro.mongodb.org/repo/redhat/os/i686/
gpgcheck=0
enabled=1

	Mac OSX

$ brew update
$ brew install mongodb

	Debian/Ubuntu

$sudo apt-key adv --keyserver hkp://keyserver.ubuntu.com:80 --recv 7F0CEB10
$echo 'deb http://downloads-distro.mongodb.org/repo/ubuntu-upstart dist 10gen' | sudo tee /etc/apt/sources.list.d/mongodb.list
$sudo apt-get update
$sudo apt-get install mongodb-org

The next step is setting up MongoDB correctly so we can take advantage of the oplog tailing features, to do this we need to start MongoDB with a replica set. It’s likely your package manager started MongoDB when they finished installing it, so we need to shut it down first, do this with the following commands.

$ mongo
> use admin;
> db.shutdownServer();

or

$ killall -12 mongod

We now need to start mongodb with a single replica set for oplog tailing. Although a single mongo server wouldn’t need to be a replica set usually, they allow it for testing purposes, if you’re planning on running ircanywhere in a production environment with a good number of users I would recommend setting up an actual cluster of servers here [https://docs.google.com/document/d/1rJ1Hi6Q9oQXPRrROJkL9xO-CQR7Unk1mPN4SHtSiY08/edit#heading=h.wivau77ttb0a] (you’ll hear more about clustering ircanywhere processes together soon).

If you are running MongoDB from a config file, which is usually located at /etc/mongodb.conf. Then you can edit this file and include the following line at the bottom:

replSet = rs0
fork = true

You can then restart MongoDB using the config file with the following commands:

$ mongod --config /etc/mongodb.conf
$ mongo
> rs.initiate()

If the file doesn’t exist you can start MongoDB with the following options to initiate a replica set (although I would recommend having a config file to save you passing in these options every time you reboot. Although this is getting out of the scope of this guide). You may need to run it as sudo.

$ mongod --logpath /var/log/mongodb.log --replSet rs0
$ mongo

Once you’ve started the mongo instance sucessfully you can connect to it with the mongo command, once connected you should see this:

MongoDB shell version: 2.4.9
connecting to: test
rs0:PRIMARY>

If you see the :PRIMARY> suffix then you’ve set the replica set up successfully. If you’re still having trouble you can try following this more detailed guide at http://meteorhacks.com/lets-scale-meteor.html.

 Copyright 2014, Ricki Hastings.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	IRCAnywhere alpha documentation

Installing IRCAnywhere

Automatic Install

You can choose to do a manual install if you want to understand how things work, by following the rest of this document, or you can run the install script which will automatically install MongoDB, the npm dependencies, start MongoDB correctly and compile the client side files.

To do this simply run the command

$./install.sh

If you already have MongoDB installed but not set up correctly with Oplog tailing, we can do that for you aswell, simply run

$ sudo ./install.sh

If this goes through with no errors you can skip to the running section here.

Installing

Once the environment is setup properly you can proceed with installing IRCAnywhere.

The first step is to clone the github repo, or you can install from the 0.2-alpha release. However a number of stability changes have been made since then so the development branch is usually the most stable.

$ git clone https://github.com/ircanywhere/ircanywhere.git
$ cd ircanywhere
$ git checkout development

or from 0.2-alpha

$ wget https://github.com/ircanywhere/ircanywhere/archive/v0.2-alpha.tar.gz
$ tar xvf v0.2-alpha.tar.gz
$ cd ircanywhere-0.2-alpha

Then we need to install the dependencies (I’ve no idea how this runs on windows, I’m not expecting it to run well because we use fibers. I’d recommend unix/linux based operating systems).

$ npm install

Next you’ll need to build the client source, you’ll need to make sure gulp is installed via npm. Once that is done you can run these commands. You can set gulp up to watch files if you’re doing any development work (including writing plugins) by running gulp watch after the following commands.

$ npm install -g gulp
$ gulp

Finally, edit the configuration file config.example.json a few things will need changed by default, the ip address and port, and you’ll need to include a smtp url if you want to be able to send emails out (forgot password links wont work without emails). Your MongoDB settings should be fine if you’ve followed these instructions or automatically installed it with the installer. Finally rename it to config.json.

HTTPS

IRCAnywhere can also be served via HTTPS. Setting it up involves little more than editing the configuration and setting the ssl property to true. Once this is done you will need to add the following files into private/certs

	private/certs/key.pem

	private/certs/cert.pem

Running

There are multiple ways you can run IRCAnywhere, you probably want to run it detaching from the console so it runs as a daemon, you can do that with the following commands:

$ npm start

or

$ node . start

Note that the above commands wont restart it’s self when an exception occurs. To do this you’re going to want to respond to signals to reboot if the system crashes or gets killed for some other reason. Traditionally node applications are ran with forever, however there is a strange case causing irc-factory to reboot when the parent restarts which loses our ability to detach from IRC connections keeping them online between restarts, this is not good.

I use a program called https://github.com/visionmedia/mon to keep the process running. You should use node . run and not node . start when using mon because it will go into a restart loop if you don’t.

$ mon -d "node . run" -p ircanywhere.pid -l logs/mon.log

If you’re running in a production environment it would be better to run this behind a nginx proxy or similar. You can see install instructions at reverse proxies section.

Updating

You can update IRCAnywhere by running the following two commands:

$ git pull
$./install.sh

And then restart accordingly, note client side files may be cached. A hard reset ctrl+r will force a full reload or try clearing your browser’s cache.

 Copyright 2014, Ricki Hastings.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	IRCAnywhere alpha documentation

Reverse Proxies

Apache

You can run IRCAnywhere behind Apache quite easily, you can also choose to run it behind a subdirectory if you please, this example runs it behind http://domain.com/ircanywhere. You can do this by adding the following to your configuration file.

ProxyPreserveHost On
RewriteEngine On

RewriteRule ^/?ircanywhere/(.*) https://%{SERVER_NAME}:3000/$1 [P]

RewriteRule ^/?api/(.*) https://%{SERVER_NAME}:3000/api/$1 [P]
RewriteRule ^/?build/(.*) https://%{SERVER_NAME}:3000/build/$1 [P]
RewriteRule ^/?websocket/(.*) https://%{SERVER_NAME}:3000/websocket/$1 [P]
RewriteRule ^/?sounds/(.*) https://%{SERVER_NAME}:3000/sounds/$1 [P]

ProxyPassReverse /ircanywhere/ https://%{SERVER_NAME}:3000/

ProxyPassReverse /websocket https://%{SERVER_NAME}:3000/websocket/
ProxyPassReverse /build https://%{SERVER_NAME}:3000/build/
ProxyPassReverse /api https://%{SERVER_NAME}:3000/api/
ProxyPassReverse /sounds https://%{SERVER_NAME}:3000/sounds/

Nginx

The following will run ircanywhere under a subdomain in nginx, like apache this can be configured to be a top level domain or a sub directory easily.

server {
 listen 80;
 server_name ircanywhere.domain.com;

 location /websocket/ {
 proxy_pass http://localhost:3000;
 proxy_http_version 1.1;
 proxy_set_header Upgrade $http_upgrade;
 proxy_set_header Connection "upgrade";
 }

 location / {
 proxy_http_version 1.1;
 proxy_set_header X-Real-IP $remote_addr;
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 proxy_set_header X-NginX-Proxy true;
 proxy_set_header Host $http_host;
 proxy_set_header Upgrade $http_upgrade;
 proxy_redirect off;
 proxy_pass http://localhost:3000;
 }
}

 Copyright 2014, Ricki Hastings.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	IRCAnywhere alpha documentation

Using the module system

There are two ways to integrate your own code into IRCAnywhere, you can hook into the backend and frontend and choose to combine them in your modules.

Modules are located in the modules/ folder and loaded automatically on startup, they require a specific directory structure to be loaded automatically. This guide will teach you how to create a basic hello world style module. For example, a module with server side code will have the following structure.

modules
`-- helloworld
 `-- server
 `-- index.js

Index.js will be the main entry point for the module, you can have other files and npm modules and require them into index.js if you need to.

Client side modules have the following directory structure.

modules
`-- helloworld
 `-- client
 `-- js
 `-- helloworld.js
 `-- less
 `-- templates

This code will be compiled into the javascript, css and templates if specified.

Server Side

Server side modules work by extending the baseModule object, each core component can be modified, extended, or have new functionality bound. Here is an example of how to bind a new command.

/* hello world example module */
baseModule.extend({
 commandManager: {
 'bind:helloworld': function (user, client, target, params) {
 console.log('hello world, you can use the arguments of this function to interact with the client object');
 console.log(arguments);
 }
 }
});

Here we are extending the commandManager object, and telling the module manager to bind a new function named helloworld, this will automatically be picked up by the command manager and the command will be accessible via /mycommand param1 param2.

We can choose to override existing core functionality by using this method aswell, an example would be overriding the initialising function of any core component by doing bind:init this should be done with caution. We can use hooks to perform actions at specific intervals aswell by using pre, post and hook instead of bind. For example

ircHandler: {
 'pre:closed': function (next, client, message) {
 console.log('do something before ircHandler.closed() is called');

 next();
 // call closed
 }
}

This will call this function before ircHnalder.closed() is executed, allowing us to extend core functionality easily.

Client Side

Client side modules are compiled into the final javascript build, and can modify any of the frontend’s functionality in a similar way to how the backend works. Because of how Ember works functionally, there isn’t really a huge need for an API, we can just build our own controllers, views, templates exactly how they are built in the core frontend code.

In this example below you can see how a client side implementation of the /helloworld command can be created.

App.InputController.reopen({
 commands: {
 '/helloworld': function() {
 console.log('hello world');
 console.log(arguments);
 }
 },
});

We can use Ember’s reopen to reopen any class and override existing core functionality. The client side javascript is currently undocumented and the module system is still partially complete, this section will be updated in the future.

 Copyright 2014, Ricki Hastings.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	IRCAnywhere alpha documentation

Server API

This is the IRCAnywhere Server API which is autogenerated from the source code and is very much a WIP.

	Application

	ChannelManager

	CommandManager

	EventManager

	IRCFactory

	IdentdServer

	IRCHandler

	IRCServer

	ModeParser

	Module

	ModuleManager

	NetworkManager

	RPCHandler

	ServerSession

	UserManager

	WebSocket

 Copyright 2014, Ricki Hastings.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	IRCAnywhere alpha documentation

 	Server API

Application

(c) 2013-2014 http://ircanywhere.com

Author: Ricki Hastings

IRCAnywhere server/app.js

	
class Application.Application()

	The applications’s main object, contains all the startup functions.
All of the objects contained in this prototype are extendable by standard
rules.

Examples:

application.post('init', function(next) {
 console.log('do something after init() is run');
 next();
});

	Returns:	void

	
Application.verbose

	A flag to determine whether verbose logging is enabled or not

	Type:	boolean

	
Application.packagejson

	A copy of the project’s package.json object

	Type:	object

	
Application.init()

	This is the main entry point for the application, it should NOT be called under any circumstances.
However it can safely be extended by hooking onto the front or back of it using pre and post hooks.
Treat this method like the main() function in a C application.

	Returns:	void

	
Application.cleanCollections()

	Clean channelUsers and events collection if needed. Usually when someone has installed
0.1-beta before installing this version and has incompatible data lingering around.

	Returns:	void

	
Application.setupOplog()

	This method initiates the oplog tailing query which will look for any incoming changes on the database.
Incoming changes are then handled and sent to the global event emitter where other classes and modules
can listen to for inserts, updates and deletes to a collection to do what they wish with the changes.

	Returns:	void

	
Application.setupWinston()

	This function sets up our winston logging levels and transports. You can safely extend
or override this function and re-run it to re-initiate the winston loggers if you want to
change the transport to send to loggly or something via a plugin.

	Returns:	void

	
Application.handleError()

	Handle things such as domain errors and properly report

	Returns:	void

	
Application.setupNode()

	Checks for a node record to store in the file system and database
This is done to generate a ‘unique’ but always the same ID to identify
the system so we can make way for clustering in the future.

	Returns:	void

	
Application.selectCipherSuite()

	This function will select a suitable cipher suite and return
a string to be used in createServer

	Returns:	void

	
Application.setupServer()

	This function is responsible for setting up the express webserver we use to serve the static files and
the sock.js server which hooks onto it to handle the websockets. None of the routes or rpc callbacks
are handled here.

	Returns:	void

 Copyright 2014, Ricki Hastings.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	IRCAnywhere alpha documentation

 	Server API

ChannelManager

(c) 2013-2014 http://ircanywhere.com

Author: Ricki Hastings

IRCAnywhere server/channels.js

	
class ChannelManager.ChannelManager()

	This object is responsible for managing everything related to channel records, such as
the handling of joins/parts/mode changes/topic changes and such.
As always these functions are extendable and can be prevented or extended by using hooks.

	Returns:	void

	
ChannelManager.queueJoin(id, channel, key)

	Queues a channel for join

	Arguments:	
	id (objectid) – A valid Mongo ObjectID for the networks collection

	channel (string) – A valid channel name

	key (string) – A key to join the channel if necessary

	Returns:	void

	
ChannelManager.getChannel(network, channel)

	Gets a tab record from the parameters passed in, strictly speaking this doesn’t have to
be a channel, a normal query window will also be returned. However this class doesn’t
need to work with anything other than channels.

A new object is created but not inserted into the database if the channel doesn’t exist.

	Arguments:	
	network (string) – A network string such as ‘freenode’

	channel (string) – The name of a channel with the hash key ‘#ircanywhere’

	Returns:	A promise with a channel object straight out of the database.

	
ChannelManager.insertUsers(key, channel, users[, force])

	Inserts a user or an array of users into a channel record matching the network key
network name and channel name, with the option to force an overwrite

	Arguments:	
	key (objectid) – A valid Mongo ObjectID for the networks collection

	channel (string) – The channel name ‘#ircanywhere’

	users ([object]) – An array of valid user objects usually from a who/join output

	[force] (boolean) – Optional boolean whether to overwrite the contents of the channelUsers

	Returns:	A promise containing final array of the users inserted

	
ChannelManager.removeUsers(key[, channel, users])

	Removes a specific user from a channel, if users is omitted, channel should be equal to a nickname
and that nickname will be removed from all channels records on that network.

	Arguments:	
	key (objectid) – A valid Mongo ObjectID for the networks collection

	[channel] (string) – A valid channel name

	users (array) – An array of users to remove from the network or channel

	Returns:	void

	
ChannelManager.updateUsers(key, users, values)

	Updates a user or an array of users from the specific channel with the values passed in.

	Arguments:	
	key (objectid) – A valid Mongo ObjectID for the networks collection

	users (array) – A valid users array

	values (object) – A hash of keys and values to be replaced in the users array

	Returns:	void

	
ChannelManager.updateModes(key, capab, channel, mode)

	Takes a mode string, parses it and handles any updates to any records relating to
the specific channel. This handles user updates and such, it shouldn’t really be called
externally, however can be pre and post hooked like all other functions in this object.

	Arguments:	
	key (objectid) – A valid Mongo ObjectID for the networks collection

	capab (object) – A valid capabilities object from the ‘registered’ event

	channel (string) – Channel name

	mode (string) – Mode string

	Returns:	void

	
ChannelManager.updateTopic(key, channel, topic, setby)

	Updates the specific channel’s topic and setby in the internal records.

	Arguments:	
	key (objectid) – A valid Mongo ObjectID for the networks collection

	channel (string) – A valid channel name

	topic (string) – The new topic

	setby (string) – A setter string, usually in the format of 'nickname!username@hostname‘

	Returns:	void

 Copyright 2014, Ricki Hastings.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	IRCAnywhere alpha documentation

 	Server API

CommandManager

(c) 2013-2014 http://ircanywhere.com

Author: Ricki Hastings

IRCAnywhere server/commands.js

	
class CommandManager.CommandManager()

	Responsible for handling all incoming commands from websocket clients

	Returns:	void

	
CommandManager.init()

	Called when the application is booted and everything is ready, sets up an observer
on the commands collection for inserts and handles them accordingly.
Also sets up aliases, this should not be recalled, although can be extended to setup
your own aliases.

	Returns:	void

	
CommandManager._ban(client, channel, nickname, ban)

	Sets +b/-b on a specific channel on a chosen client, not extendable
and private.

	Arguments:	
	client (object) – A valid client object

	channel (string) – A channel name

	nickname (string) – A nickname or hostname to ban

	ban (boolean) – Whether to ban or unban

	Returns:	void

	
CommandManager.createAlias(command, alias)

	Creates an alias from the first parameter to the remaining ones.

Examples:

commandManager.createAlias('/part', '/p', '/leave');
// sets an alias for /p and /leave to forward to /part

	Arguments:	
	command (string) – A command to alias

	alias (...string) – A command to map to

	Returns:	void

	
CommandManager.parseCommand(user, client, target, command)

	Parse a command string and determine where to send it after that based on what it is
ie just text or a string like: ‘/join #channel’

	Arguments:	
	user (object) – A valid user object

	client (object) – A valid client object

	target (string) – Target to send command to, usually a channel or username

	command (string) – The command string

	Returns:	void

	
CommandManager.msg(user, client, target, params, out, id)

	‘/nickserv’ command

	Arguments:	
	user (object) – A valid user object

	client (object) – A valid client object

	target (string) – Target to send command to, usually a channel or username

	params (string) – The command string

	out (boolean) – Used to force the message to target or params[0]

	id (objectid) – The object id of the command so we can remove it if we need to

	Returns:	void

	
CommandManager.msg(user, client, target, params, out, id)

	‘/msg’ command

	Arguments:	
	user (object) – A valid user object

	client (object) – A valid client object

	target (string) – Target to send command to, usually a channel or username

	params (string) – The command string

	out (boolean) – Used to force the message to target or params[0]

	id (objectid) – The object id of the command so we can remove it if we need to

	Returns:	void

	
CommandManager.notice(user, client, target, params)

	‘/notice’ command

	Arguments:	
	user (object) – A valid user object

	client (object) – A valid client object

	target (string) – Target to send command to, usually a channel or username

	params (string) – The command string

	Returns:	void

	
CommandManager.me(user, client, target, params)

	‘/me’ command

	Arguments:	
	user (object) – A valid user object

	client (object) – A valid client object

	target (string) – Target to send command to, usually a channel or username

	params (string) – The command string

	Returns:	void

	
CommandManager.join(user, client, target, params)

	‘/join’ command

	Arguments:	
	user (object) – A valid user object

	client (object) – A valid client object

	target (string) – Target to send command to, usually a channel or username

	params (string) – The command string

	Returns:	void

	
CommandManager.part(user, client, target, params)

	‘/part’ command

	Arguments:	
	user (object) – A valid user object

	client (object) – A valid client object

	target (string) – Target to send command to, usually a channel or username

	params (string) – The command string

	Returns:	void

	
CommandManager.cycle(user, client, target, params)

	‘/cycle’ command

	Arguments:	
	user (object) – A valid user object

	client (object) – A valid client object

	target (string) – Target to send command to, usually a channel or username

	params (string) – The command string

	Returns:	void

	
CommandManager.topic(user, client, target, params)

	‘/topic’ command

	Arguments:	
	user (object) – A valid user object

	client (object) – A valid client object

	target (string) – Target to send command to, usually a channel or username

	params (string) – The command string

	Returns:	void

	
CommandManager.mode(user, client, target, params)

	‘/mode’ command

	Arguments:	
	user (object) – A valid user object

	client (object) – A valid client object

	target (string) – Target to send command to, usually a channel or username

	params (string) – The command string

	Returns:	void

	
CommandManager.invite(user, client, target, params)

	‘/invite’ command

	Arguments:	
	user (object) – A valid user object

	client (object) – A valid client object

	target (string) – Target to send command to, usually a channel or username

	params (string) – The command string

	Returns:	void

	
CommandManager.kick(user, client, target, params)

	‘/kick’ command

	Arguments:	
	user (object) – A valid user object

	client (object) – A valid client object

	target (string) – Target to send command to, usually a channel or username

	params (string) – The command string

	Returns:	void

	
CommandManager.kickban(user, client, target, params)

	‘/kickban’ command

	Arguments:	
	user (object) – A valid user object

	client (object) – A valid client object

	target (string) – Target to send command to, usually a channel or username

	params (string) – The command string

	Returns:	void

	
CommandManager.ban(user, client, target, params)

	‘/ban’ command

	Arguments:	
	user (object) – A valid user object

	client (object) – A valid client object

	target (string) – Target to send command to, usually a channel or username

	params (string) – The command string

	Returns:	void

	
CommandManager.unban(user, client, target, params)

	‘/unban’ command

	Arguments:	
	user (object) – A valid user object

	client (object) – A valid client object

	target (string) – Target to send command to, usually a channel or username

	params (string) – The command string

	Returns:	void

	
CommandManager.nick(user, client, target, params)

	‘/nick’ command

	Arguments:	
	user (object) – A valid user object

	client (object) – A valid client object

	target (string) – Target to send command to, usually a channel or username

	params (string) – The command string

	Returns:	void

	
CommandManager.ctcp(user, client, target, params)

	‘/ctcp’ command

	Arguments:	
	user (object) – A valid user object

	client (object) – A valid client object

	target (string) – Target to send command to, usually a channel or username

	params (string) – The command string

	Returns:	void

	
CommandManager.away(user, client, target, params)

	‘/away’ command

	Arguments:	
	user (object) – A valid user object

	client (object) – A valid client object

	target (string) – Target to send command to, usually a channel or username

	params (string) – The command string

	Returns:	void

	
CommandManager.unaway(user, client)

	‘/unaway’ command

	Arguments:	
	user (object) – A valid user object

	client (object) – A valid client object

	Returns:	void

	
CommandManager.close(user, client, target)

	‘/close’ command

	Arguments:	
	user (object) – A valid user object

	client (object) – A valid client object

	target (string) – Target to send command to, usually a channel or username

	Returns:	void

	
CommandManager.query(user, client, target)

	‘/query’ command

	Arguments:	
	user (object) – A valid user object

	client (object) – A valid client object

	target (string) – Target to send command to, usually a channel or username

	Returns:	void

	
CommandManager.quit(user, client)

	‘/quit’ command

	Arguments:	
	user (object) – A valid user object

	client (object) – A valid client object

	Returns:	void

	
CommandManager.reconnect(user, client)

	‘/reconnect’ command

	Arguments:	
	user (object) – A valid user object

	client (object) – A valid client object

	Returns:	void

	
CommandManager.list(user, client, target, params)

	‘/list’ command

	Arguments:	
	user (object) – A valid user object

	client (object) – A valid client object

	target (string) – Target to send command to, usually a channel or username

	params (string) – The command string

	Returns:	void

	
CommandManager.whois(user, client, target, params)

	‘/whois’ command

	Arguments:	
	user (object) – A valid user object

	client (object) – A valid client object

	target (string) – Target to send command to, usually a channel or username

	params (string) – The command string

	Returns:	void

	
CommandManager.raw(user, client, target, params)

	‘/raw’ command

	Arguments:	
	user (object) – A valid user object

	client (object) – A valid client object

	target (string) – Target to send command to, usually a channel or username

	params (string) – The command string

	Returns:	void

 Copyright 2014, Ricki Hastings.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	IRCAnywhere alpha documentation

 	Server API

EventManager

(c) 2013-2014 http://ircanywhere.com

Author: Ricki Hastings

IRCAnywhere server/events.js

	
class EventManager.EventManager()

	Constructor, does nothing

	Returns:	void

	
EventManager.channelEvents

	A list of events relating to channels

	
EventManager._insert(client, message, type[, user, force])

	Inserts an event into a backlog after all the checking has been done
this api is private and EventManager.insertEvent should be used instead

	Arguments:	
	client (object) – A valid client object

	message (object) – A valid message object from irc-message

	type (string) – Event type

	[user] (object) – An optional user object

	[force] (boolean) – An optional force boolean to force the event into the ‘*’ status window

	Returns:	void

	
EventManager.insertEvent(client, message, type, cb)

	Inserts an event into the backlog, takes a client and message object and a type
Usually ‘privmsg’ or ‘join’ etc.

	Arguments:	
	client (object) – A valid client object

	message (object) – A valid message object from irc-message

	type (string) – Event type

	cb (function) – Callback function to be executed after insert

	Returns:	void

	
EventManager.determineHighlight(client, message, type, ours)

	Determine whether a message should be marked as a highlight or not for the specific
IRC client. Currently this does not support anything other than looking at their nickname.

	Arguments:	
	client (object) – A valid client object

	message (object) – A valid message object from irc-message

	type (string) – Event type

	ours (boolean) – Whether this message comes from this client

	Returns:	true or false

	
EventManager.getPrefix(client, user)

	Gets the channel prefix for the irc client and the user object. A valid object returned is
in the format of:

{prefix: '+', sort: 5};

	Arguments:	
	client (object) – A valid client object

	user (object) – A valid user object

	Returns:	A valid prefix object

	
EventManager.getEventByType(type, network, userId)

	Gets the most recent event from the database by its type.

	Arguments:	
	type (string) – Event type

	network (objectid) – Event network

	userId (string) – Id of the user

	Returns:	Promise that resolves to event.

	
EventManager.getUserPlayback(network, userId)

	Gets the message playback for an IRC server user since he was last seen.

	Arguments:	
	network (objectid) – Network to get playback from

	userId (string) – Id of the user

	Returns:	Promise that resolves to array of playback events.

 Copyright 2014, Ricki Hastings.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	IRCAnywhere alpha documentation

 	Server API

IRCFactory

(c) 2013-2014 http://ircanywhere.com

Author: Ricki Hastings

IRCAnywhere server/factory.js

	
class IRCFactory.IRCFactory()

	The IRCFactory object which handles communication with the irc-factory package
This object is not hookable or extendable because plugins can deny the execution of
functions when they hook into it, the results could be disasterous. If incoming events
need to be hooked onto you could hook onto the IRCHandler object.

The default irc-factory options are below:

{
 events: 31920,
 rpc: 31930,
 automaticSetup: true
}

The fork setting comes from our configuration object and is inserted when init is ran.

	Returns:	void

	
IRCFactory.options

	The irc-factory options to use

	Type:	object

	
IRCFactory.init()

	Initiates the irc factory and it’s connection and sets up an event handler
when the application is ready to run.

	Returns:	void

	
IRCFactory.handleEvent(event, object)

	Handles incoming factory events, events are expected to come in the following format:

['52d3fc718132f8486dcde1d0', 'privmsg'] { nickname: 'ricki-',
 username: 'ia1',
 hostname: '127.0.0.1',
 target: '#ircanywhere-test',
 message: '#ircanywhere-test WORD UP BROSEPTH',
 time: '2014-01-22T18:20:57.323Z',

More advanced docs can be found at https://github.com/ircanywhere/irc-factory/wiki/Events

	Arguments:	
	event ([string]) – A valid event array from irc-factory [‘52d3fc718132f8486dcde1d0’, ‘privmsg’]

	object (object) – A valid event object from irc-factory

	Returns:	void

	
IRCFactory.create(network)

	Sends the command to irc-factory to create a new irc client with the given settings.
If the client already exists it will be dropped by irc-factory.

	Arguments:	
	network (object) – A valid client object

	Returns:	void

	
IRCFactory.destroy(key, forced)

	Sends the command to destroy a client with the given key. If the client doesn’t exist
the command will just be dropped.

	Arguments:	
	key (objectid) – A client key which has the type of a Mongo ObjectID

	forced (boolean) – Whether we forced a client disconnect or not

	Returns:	void

	
IRCFactory.send(key, command, args)

	Calls an RPC command on the irc-factory client, usually used to send
commands such as /WHO etc. It’s probably best to use CommandManager in most cases

	Arguments:	
	key (objectid) – A client key which has the type of a Mongo ObjectID

	command (string) – An IRC command to send, such as ‘mode’ or ‘join’

	args (array) – An array of arguments to send delimited by a space.

	Returns:	void

 Copyright 2014, Ricki Hastings.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	IRCAnywhere alpha documentation

 	Server API

IdentdServer

(c) 2013-2014 http://ircanywhere.com

Author: Ricki Hastings

IRCAnywhere server/identd.js

	
class IdentdServer.IdentdServer()

	This is the IdentdServer object which creates an integrated identd server and can be turned
off via the configuration, this is a singleton and should never be instantiated more than once.

The configuration option identd.enable and identd.port will control whether this runs and what port
it runs on, the default port is 113 but you can bind it to whatever you like and use iptables
to forward to 113, without doing that IRCAnywhere will need elevated permissions to bind.

	Returns:	void

	
IdentdServer.init()

	Initiates the identd server and handles any configuration options

	Returns:	void

	
IdentdServer.onData(socket, data)

	Handles incoming data to the identd server, this shouldn’t ever be called, but the documentation is
here so people know what the function is doing and where responses are handled etc.
Protocol information can be found at http://en.wikipedia.org/wiki/Ident_protocol

	Arguments:	
	socket (socket) – A valid socket from net.createServer callback

	data (bufferobject) – http://nodejs.org/api/net.html#net_event_data

	Returns:	void

	
IdentdServer.parse(line)

	Once the data has been handled it needs to be parsed so we can figure out what the identd request is
and respond to it accordingly to validate our connecting user.

	Arguments:	
	line (string) – The parsed ident line

	Returns:	The response for the requester

 Copyright 2014, Ricki Hastings.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	IRCAnywhere alpha documentation

 	Server API

IRCHandler

(c) 2013-2014 http://ircanywhere.com

Author: Ricki Hastings

IRCAnywhere server/irchandler.js

	
class IRCHandler.IRCHandler()

	The object responsible for handling an event from IRCFactory
none of these should be called directly, however they can be hooked onto
or have their actions prevented or replaced. The function names equal directly
to irc-factory events and are case sensitive to them.

	Returns:	void

	
IRCHandler.blacklisted

	An array of blacklisted commands which should be ignored

	Type:	array

	
IRCHandler._formatRaw(raw)

	Formats an array of RAW IRC strings, taking off the :leguin.freenode.net 251 ricki- :
at the start, returns an array of strings with it removed

	Arguments:	
	raw (array) – An array of raw IRC strings to format

	Returns:	A formatted array of the inputted strings

	
IRCHandler.opened(client, message)

	Handles the opened event from irc-factory which just tells us what localPort and any other
information relating to the client so we can make sure the identd server is working.

	Arguments:	
	client (object) – A valid client object

	message (object) – A valid message object

	Returns:	void

	
IRCHandler.registered(client, message)

	Handles the registered event, this will only ever be called when an IRC connection has been
fully established and we’ve recieved the registered events. This means when we reconnect to
an already established connection we won’t get this event again.

	Arguments:	
	client (object) – A valid client object

	message (object) – A valid message object

	Returns:	void

	
IRCHandler.closed(client, message)

	Handles a closed connection

	Arguments:	
	client (object) – A valid client object

	message (object) – A valid message object

	Returns:	void

	
IRCHandler.failed(client, message)

	Handles a failed event, which is emitted when the retry attempts are exhaused

	Arguments:	
	client (object) – A valid client object

	message (object) – A valid message object

	Returns:	void

	
IRCHandler.lusers(client, message)

	Handles an incoming lusers event

	Arguments:	
	client (object) – A valid client object

	message (object) – A valid message object

	Returns:	void

	
IRCHandler.motd(client, message)

	Handles an incoming motd event

	Arguments:	
	client (object) – A valid client object

	message (object) – A valid message object

	Returns:	void

	
IRCHandler.join(client, message)

	Handles an incoming join event

	Arguments:	
	client (object) – A valid client object

	message (object) – A valid message object

	Returns:	void

	
IRCHandler.part(client, message)

	Handles an incoming part event

	Arguments:	
	client (object) – A valid client object

	message (object) – A valid message object

	Returns:	void

	
IRCHandler.kick(client, message)

	Handles an incoming kick event

	Arguments:	
	client (object) – A valid client object

	message (object) – A valid message object

	Returns:	void

	
IRCHandler.quit(client, message)

	Handles an incoming quit event

	Arguments:	
	client (object) – A valid client object

	message (object) – A valid message object

	Returns:	void

	
IRCHandler.nick(client, message)

	Handles an incoming nick change event

	Arguments:	
	client (object) – A valid client object

	message (object) – A valid message object

	Returns:	void

	
IRCHandler.who(client, message)

	Handles an incoming who event

	Arguments:	
	client (object) – A valid client object

	message (object) – A valid message object

	Returns:	void

	
IRCHandler.names(client, message)

	Handles an incoming names event

	Arguments:	
	client (object) – A valid client object

	message (object) – A valid message object

	Returns:	void

	
IRCHandler.mode(client, message)

	Handles an incoming mode notify event

	Arguments:	
	client (object) – A valid client object

	message (object) – A valid message object

	Returns:	void

	
IRCHandler.mode_change(client, message)

	Handles an incoming mode change event

	Arguments:	
	client (object) – A valid client object

	message (object) – A valid message object

	
IRCHandler.topic(client, message)

	Handles an incoming topic notify event

	Arguments:	
	client (object) – A valid client object

	message (object) – A valid message object

	Returns:	void

	
IRCHandler.topic_change(client, message)

	Handles an incoming topic change event

	Arguments:	
	client (object) – A valid client object

	message (object) – A valid message object

	Returns:	void

	
IRCHandler.privmsg(client, message)

	Handles an incoming privmsg event

	Arguments:	
	client (object) – A valid client object

	message (object) – A valid message object

	Returns:	void

	
IRCHandler.action(client, message)

	Handles an incoming action event

	Arguments:	
	client (object) – A valid client object

	message (object) – A valid message object

	Returns:	void

	
IRCHandler.notice(client, message)

	Handles an incoming notice event

	Arguments:	
	client (object) – A valid client object

	message (object) – A valid message object

	Returns:	void

	
IRCHandler.usermode(client, message)

	Handles an incoming usermode event

	Arguments:	
	client (object) – A valid client object

	message (object) – A valid message object

	Returns:	void

	
IRCHandler.ctcp_response(client, message)

	Handles an incoming ctcp_response event

	Arguments:	
	client (object) – A valid client object

	message (object) – A valid message object

	Returns:	void

	
IRCHandler.ctcp_request(client, message)

	Handles an incoming ctcp request event

	Arguments:	
	client (object) – A valid client object

	message (object) – A valid message object

	Returns:	void

	
IRCHandler.unknown(client, message)

	Handles an incoming unknown event

	Arguments:	
	client (object) – A valid client object

	message (object) – A valid message object

	Returns:	void

	
IRCHandler.banlist(client, message)

	Handles an incoming banlist event

	Arguments:	
	client (object) – A valid client object

	message (object) – A valid message object

	Returns:	void

	
IRCHandler.invitelist(client, message)

	Handles an incoming invitelist event

	Arguments:	
	client (object) – A valid client object

	message (object) – A valid message object

	Returns:	void

	
IRCHandler.exceptlist(client, message)

	Handles an incoming exceptlist event

	Arguments:	
	client (object) – A valid client object

	message (object) – A valid message object

	Returns:	void

	
IRCHandler.quietlist(client, message)

	Handles an incoming quietlist event

	Arguments:	
	client (object) – A valid client object

	message (object) – A valid message object

	Returns:	void

	
IRCHandler.list(client, message)

	Handles an incoming list event

	Arguments:	
	client (object) – A valid client object

	message (object) – A valid message object

	Returns:	void

	
IRCHandler.whois(client, message)

	Handles an incoming whois event

	Arguments:	
	client (object) – A valid client object

	message (object) – A valid message object

	Returns:	void

 Copyright 2014, Ricki Hastings.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	IRCAnywhere alpha documentation

 	Server API

IRCServer

(c) 2013-2014 http://ircanywhere.com

Author: Rodrigo Silveira

IRCAnywhere server/server.js

	
class IRCServer.IRCServer()

	This is the IRC server that manages IRC client connections to ircanywhere. The IRC server
can be turned off by configuration. this is a singleton and should never be instantiated more than once.

The configuration option ircServer.enable and ircServer.port will control whether this runs and what
port it runs on. The default port is 6667.

	Returns:	void

	
IRCServer.init()

	Setup server and start listening for connections.

	Returns:	void

	
IRCServer.onConnect(socket)

	Handles new server connection. Starts a session.

	Arguments:	
	socket (object) – Connection socket to the client

	Returns:	void

 Copyright 2014, Ricki Hastings.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	IRCAnywhere alpha documentation

 	Server API

ModeParser

(c) 2013-2014 http://ircanywhere.com

Author: Ricki Hastings

IRCAnywhere server/modeparser.js

	
class ModeParser.ModeParser()

	Responsible for parsing mode strings into unstandable actions
and also responsible for applying those actions to a channel/user object.

None of these functions can be hooked onto or extended seen as though it’s just not
needed and could be malicious if people are altering mode string, bugs relating to this
are difficult to find, if you want to hook a mode change hook to IRCHandler.mode_change()

	Returns:	void

	
ModeParser.sortModes(capabilities, modes)

	Sorts a mode string into an object of instructions that we can use to perform actions
based on what the mode string suggests, ie apply operator to ‘someone’, or set +m on the channel

	Arguments:	
	capabilities (object) – A valid capabilities object from a client

	modes (string) – A mode string +no-v rickibalboa Gnasher

	Returns:	A valid modeArray object

	
ModeParser.changeModes(capabilities, modes, modeArray)

	Handles the object of instructions returned from sortModes, and applies them

	Arguments:	
	capabilities (object) – A valid capabilities object from a client

	modes (object) – The current mode string for the channel (not including all parameters)

	modeArray (object) – A valid modeArray object from sortModes()

	Returns:	The channel mode string with the changes applied.

	
ModeParser.handleParams(capabilities, users, modeArray)

	Applies any mode changes that contain status related modes, usually qaohv modes
minus: rickibalboa: -o > will remove the o flag from the nickname record
minus: rickibalboa: +v > will set the v flag on the nickname record

	Arguments:	
	capabilities (object) – A valid capabilities object from a client

	users (object) – A valid users array for a channel

	modeArray (object) – A valid modeArray from sortModes

	Returns:	An array of users that have been affected by the mode change

 Copyright 2014, Ricki Hastings.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	IRCAnywhere alpha documentation

 	Server API

Module

(c) 2013-2014 http://ircanywhere.com

Author: Ricki Hastings

IRCAnywhere server/basemodule.js

	
class Module.Module()

	Base class for creating modules

	Returns:	void.. js:class:: Module.undefined()

	
Module.extend(object)

	Extend function used to extend objects with base module functionality so they
can hook into core events. This should only be called once per module, if a module
needs to contain multiple files, this object can be pulled in from multiple files
with exports and require and the output can be extended once.

	Arguments:	
	object (object) – The module object to extend

	Returns:	void.. js:class:: Module.undefined()

	
Module.bindFunction(key, classObject, split, fn, object)

	Used to bind hooks for a function on a core object

	Arguments:	
	key (string) – Class name

	classObject (object) – Class object

	split (array) – An array containing two values, ‘pre|post|hook’ and method name

	fn (function) – A callback

	object (object) – The base object where the fn belongs in

	Returns:	void

 Copyright 2014, Ricki Hastings.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	IRCAnywhere alpha documentation

 	Server API

ModuleManager

(c) 2013-2014 http://ircanywhere.com

Author: Rodrigo Silveira

IRCAnywhere server/module.js

	
class ModuleManager.ModuleManager()

	Handles loading of modules.

	Returns:	void

	
ModuleManager.loadModule(moduleName)

	Loads a module by name. The name should be the name of the folder containing the module.

	Arguments:	
	moduleName (string) – Name of module to load.

	Returns:	void

	
ModuleManager.loadAllModules()

	Loads all modules.

	Returns:	void

	
ModuleManager.bindModule(module)

	Bind events and expose module to core functionality and vice versa

	Arguments:	
	module (object) – A valid module object returned from require()

	Returns:	void

 Copyright 2014, Ricki Hastings.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	IRCAnywhere alpha documentation

 	Server API

NetworkManager

(c) 2013-2014 http://ircanywhere.com

Author: Ricki Hastings

IRCAnywhere server/networks.js

	
class NetworkManager.NetworkManager()

	Responsible for handling everything related to networks, such as tracking changes
removing, creating, changing tabs, creating and deleting networks etc.

	Returns:	void

	
NetworkManager.flags

	An object containing the valid network statuses

	Type:	object

	
NetworkManager.init()

	Called when the application is ready to proceed, this sets up event listeners
for changes on networks and tabs collections and updates the Client object with the changes
to essentially keep the object in sync with the collection so we can do fast lookups, but
writes to the collection will propogate through and update Clients

	Returns:	void

	
NetworkManager.getClients()

	Gets a list of networks, used by IRCFactory on synchronise
to determine who to connect on startup, doesn’t ever really need to be called
also can be modified with hooks to return more information if needed.

	Returns:	A promise containing the clients that should be started up

	
NetworkManager.getClientsForUSer(userId)

	Gets a list of active networks for a user.

	Arguments:	
	userId (string) – Id of the user

	Returns:	A promise that will resolve to the clients for the given user

	
NetworkManager.getActiveChannelsForUser(userId, networkId)

	Gets a list of active channels for a user.

	Arguments:	
	userId (string) – Id of the user

	networkId (string) – Id of the network

	Returns:	A promise that will resolve to the active channels for the given user

	
NetworkManager.addNetworkApi(req)

	Handles the add network api call, basically handling authentication
validating the parameters and input, and on success passes the information
to addNetwork() which handles everything else

	Arguments:	
	req (object) – A valid request object from express

	Returns:	An output object for the API call

	
NetworkManager.editNetworkApi(req)

	Handles the edit network api call, everything the add network call does
except it takes a network ID as a parameter validates the new data.
On success it passes to editNetwork() which handles the rest.

	Arguments:	
	req (object) – A valid request object from express

	Returns:	An output object for the API call

	
NetworkManager.addNetwork(user, network, status)

	Adds a network using the settings specified to the user’s set of networks
This just adds it to the database and doesn’t attempt to start it up.

	Arguments:	
	user (object) – A valid user object from the users collection

	network (object) – A valid network object to insert

	status (string) – A valid network status

	Returns:	A promise to determine whether the insert worked or not

	
NetworkManager.editNetwork(user, network)

	Edits an existing network, updating the record in the database. We’ll inform
irc-factory that the network information has changed and perform a reconnect.

	Arguments:	
	user (object) – A valid user object from the users collection

	network (object) – A valid network object to update

	Returns:	A promise to determine whether the insert worked or not

	
NetworkManager.addTab(client, target, type[, select, active])

	Adds a tab to the client’s (network unique to user) tabs, this can be a
channel or a username.

	Arguments:	
	client (object) – A valid client object

	target (string) – The name of the tab being created

	type (string) – The type of the tab either ‘query’, ‘channel’ or ‘network’

	[select] (boolean) – Whether to mark the tab as selected or not, defaults to false

	[active] (boolean) – Whether to mark the tab as active or not, defaults to true

	Returns:	void

	
NetworkManager.activeTab(client[, target, activate])

	Changes a tabs activity (not selection) - for example when you’re kicked from a channel the tab
wont be removed it will be just set to active: false so when you see it in the interface it will appear as
(#ircanywhere) instead of #ircanywhere
We can omit target and call activeTab(client, false) to set them all to false (such as on disconnect)

	Arguments:	
	client (object) – A valid client object

	[target] (string) – The name of the tab being altered, discard to mark all as active or inactive.

	activate (boolean) – Whether to set the tab as active or not

	Returns:	void

	
NetworkManager.removeTab(client[, target])

	Removes the specified tab, be careful because this doesn’t re-select one, you’re expected to look
for a removed tab, if it’s the currently selected one, go back to a different one.

	Arguments:	
	client (object) – A valid client object

	[target] (string) – The name of the tab being altered, discard to remove all.

	Returns:	void

	
NetworkManager.connectNetwork(network)

	Connect the specified network record, should only really be called when creating
a new network as IRCFactory will load the client up on startup and then determine
whether to connect the network itself based on the options.

However, it’s also called when it appears that there is no connected client on the
/reconnect command (and any other similar commands). We can determine this (sloppy)
from checking client.internal.status. If in the case that it does exist, it doesn’t
matter if this is called really because irc-factory will prevent a re-write if the
key is the same. We could consider looking at the response from factory synchronize
but it might not yield a good result because of newly created clients since startup.

	Arguments:	
	network (object) – A valid network or client object

	Returns:	void

	
NetworkManager.changeStatus(query, status)

	Update the status for a specific network specified by a MongoDB query. The reason for
this and not a straight ID is so we can do certain things such as checking if a network
is marked as ‘disconnected’ during the closed event to determine whether to keep it as
‘disconnected’ or mark it as ‘closed’. So we can do much more elaborate queries here than
just ID checking

	Arguments:	
	query (object) – A MongoDB query to select a network

	status (boolean) – A valid network status

	Returns:	void

 Copyright 2014, Ricki Hastings.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	IRCAnywhere alpha documentation

 	Server API

RPCHandler

(c) 2013-2014 http://ircanywhere.com

Author: Ricki Hastings

IRCAnywhere server/rpc.js

	
class RPCHandler.RPCHandler()

	Singleton class to handle the inbound and outbound RPC calls on the websocket lines

	Returns:	void

	
RPCHandler.init()

	Called when the application is ready, sets up an observer on our collections
so we can figure out whether we need to propogate them to clients.

	Returns:	void

	
RPCHandler.push(uid, command, data)

	Pushes the data and command out to any sockets associated to that uid

	Arguments:	
	uid (string) – A valid user id converted from an object ID

	command (string) – The command to send

	data (string) – The json data to send

	Returns:	void

	
RPCHandler.handleUsersUpdate(doc)

	Handles any update changes to the users collection and sends changes to clients

	Arguments:	
	doc (object) – A valid MongoDB document with an _id

	Returns:	void

	
RPCHandler.handleNetworksAll(doc)

	Handles any all changes to the network collection

	Arguments:	
	doc (object) – A valid MongoDB document with an _id

	Returns:	void

	
RPCHandler.handleTabsAll(doc)

	Handles all changes to the tabs collections

	Arguments:	
	doc (object) – A valid MongoDB document with an _id

	Returns:	void

	
RPCHandler.handleEventsAll(doc)

	Handles any changes to the events collection

	Arguments:	
	doc (object) – A valid MongoDB document with an _id

	Returns:	void

	
RPCHandler.handleCommandsAll(doc)

	Handles all operations on the commands collection

	Arguments:	
	doc (object) – A valid MongoDB document with an _id

	Returns:	void

	
RPCHandler.handleChannelUsersAll(doc)

	Handles any changes on the channelUsers collection

	Arguments:	
	doc (object) – A valid MongoDB document with an _id

	Returns:	void

	
RPCHandler.onSocketOpen(socket)

	Handles a new websocket opening and attaches the RPC events

	Arguments:	
	socket (object) – A valid sock.js socket

	Returns:	void

	
RPCHandler.handleAuth(socket, data)

	Handles the authentication command sent to us from websocket clients
Authenticates us against login tokens in the user record, disconnects
if expired or incorrect.

	Arguments:	
	socket (object) – A valid sock.js socket

	data (object) – A valid data object from sock.js

	Returns:	void

	
RPCHandler.handleConnect(socket)

	Handles new websocket clients, this is only done after
they have been authenticated and it’s been accepted.

	Arguments:	
	socket (object) – A valid sock.js socket

	Returns:	void

	
RPCHandler.handleCommand(socket, data, exec)

	Handles the exec command RPC call. Which should be used to execute /commands
from the clientside without inserting them into the backlog.

	Arguments:	
	socket (object) – A valid sock.js socket

	data (object) – A valid data object from sock.js

	exec (boolean) – Whether to exec the command or backlog it

	Returns:	void

	
RPCHandler.handleReadEvents(socket, data)

	Handles the command which marks events as read. It takes a MongoDB query and updates
them with that query.

	Arguments:	
	socket (object) – A valid sock.js socket

	data (object) – A valid data object from sock.js

	Returns:	void

	
RPCHandler.handleSelectTab(socket, data)

	Handles the selectTab command which is used to change the currently active tab
for that user.

	Arguments:	
	socket (object) – A valid sock.js socket

	data (object) – A valid data object from sock.js

	Returns:	void

	
RPCHandler.handleUpdateTab(socket, data)

	Handles the update tab command, we’re allowed to change client side only settings here
hiddenUsers and hiddenEvents only at the moment.

	Arguments:	
	socket (object) – A valid sock.js socket

	data (object) – A valid data object from sock.js

	Returns:	void

	
RPCHandler.handleInsertTab(socket, data)

	Allows users to create new tabs on the fly from the client side. Restricted to channel and query tabs.

	Arguments:	
	socket (object) – A valid sock.js socket

	data (object) – A valid data object from sock.js

	Returns:	void

	
RPCHandler.handleGetEvents(socket, data)

	Handles queries to the events collection

	Arguments:	
	socket (object) – A valid sock.js socket

	data (object) – A valid data object from sock.js

	Returns:	void

 Copyright 2014, Ricki Hastings.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	IRCAnywhere alpha documentation

 	Server API

ServerSession

(c) 2013-2014 http://ircanywhere.com

Author: Rodrigo Silveira

IRCAnywhere server/serversession.js

	
disconnectUser()

	Disconnects the socket.

	Returns:	void.. js:class:: ServerSession.ServerSession(socket)

Handles the communication between an IRC client and ircanywhere’s IRC server. Instantiated on
every new client connection.

	Arguments:	
	socket (object) – Connection socket to the client

	Returns:	void

	
ServerSession.debug

	A flag to determine whether debug logging is enabled or not

	Type:	boolean

	
ServerSession.init()

	Initializes session.

	Returns:	void

	
ServerSession.pass(message)

	Handles PASS message from client. Stores password for login.

	Arguments:	
	message (object) – Received message

	Returns:	void

	
ServerSession.nick(message)

	Handles NICK message from client. If message arrives before welcome, just store nickname temporarily to use
on the welcome message. Otherwise forward it.

	Arguments:	
	message (object) – Received message

	Returns:	void

	
ServerSession.quit()

	Handles QUIT message from client. Disconnects the user.

	Returns:	void

	
ServerSession.user(message)

	Handles USER message from client. Start login sequence. Username should contain network information if
more then one network is registered. Username with network is in the form:

	Arguments:	
	message (object) – Received message

	Returns:	void

	
ServerSession.setup()

	Sets up client to listen to IRC activity.

	Returns:	void

	
ServerSession.handleEvent(event)

	Handle IRC events.

	Arguments:	
	event (object) – Event to handle

	Returns:	void

	
ServerSession.handleIrcMessage(ircMessage)

	Forwards messages that are not stored in the events collection in the database.

	Arguments:	
	ircMessage (object) – Irc Message object

	Returns:	void

	
ServerSession.sendWelcome()

	Sends stored welcome message from network to client. Message order is registered, lusers,
nick (to set to stored nick), motd and usermode.

	
ServerSession.sendJoins()

	Sends to client a join message for each active channel tab.

	
ServerSession.sendChannelInfo(tab)

	Sends channel information, such as NAMES, TOPIC etc

	Arguments:	
	tab (object) – Channel tab

	Returns:	void

	
ServerSession.sendPlayback()

	Sends playback messages to client.

	Returns:	void

	
ServerSession.privmsg(message)

	Handles PRIVMSG messages from client. Forwards to ircHandler and to ircFactory.

	Arguments:	
	message (object) – Received message

	Returns:	void

	
ServerSession.onClientMessage(message, command)

	Handles all message that do not have a specific handler.

	Arguments:	
	message (object) – Received message

	command (string) – Messages command

	Returns:	void

	
ServerSession.sendRaw(rawMessage)

	Sends a raw message to the client

	Arguments:	
	rawMessage (string) – Raw message

	Returns:	void

 Copyright 2014, Ricki Hastings.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	IRCAnywhere alpha documentation

 	Server API

UserManager

(c) 2013-2014 http://ircanywhere.com

Author: Ricki Hastings

IRCAnywhere server/users.js

	
loginServerUser(email, password)

	Handles login of IRC server user

	Arguments:	
	email (string) – User email

	password (string) – User password

	
updateLastSeen(userId[, lastSeen])

	Update lastSeen entry of user.

	Arguments:	
	userId (string) – Id of the user

	[lastSeen] (date) – New lastSeen value

	
class UserManager.UserManager()

	Responsible for handling user related actions ie registering, logging in, forgot passwords etc.
Most of these actions are triggered via API calls.

	Returns:	void

	
UserManager.init()

	Sets up the API routes and anything else needed by the user manager class.
Such as timers and the SMTP connection

	Returns:	void

	
UserManager.timeOutInactive()

	Responsible for disconnecting any inactive users

This function is ran every hour or so, but not perfectly precise, but it shouldn’t
drift off too much because it re-corrects it self.

	Returns:	void

	
UserManager.isAuthenticated(data)

	Checks the sent in authentication string (should be “token=actualToken”)
all in string format, this is how it is sent in the authentication command and
how it lies as a cookie. It also takes a full cookie string, such as
“someKey=1; someOtherKey=2; token=actualToken” and the token will only be parsed and used.

Returns a valid user object which can be used to set on the socket for example or
HTTP request, returns false if invalid

	Arguments:	
	data (object) – A valid data object from sock.js

	
UserManager.registerUser(req)

	Handles user registrations, it takes req and res objects from express at the moment
however it should probably stay this way, because the api to register a user is at /api/register.
I can’t see a reason to change this to take individual parameters.

	Arguments:	
	req (object) – A valid request object from express

	Returns:	An output object for the API call

	
UserManager.userLogin(req, res)

	Handles the login call to /api/login and sets an appropriate cookie if successful.

	Arguments:	
	req (object) – A valid request object from express

	res (object) – A valid response object from express

	Returns:	An output object for the API call

	
UserManager.userLogout(req)

	Handles the call to /api/logout which is self explanatory.

	Arguments:	
	req (object) – A valid request object from express

	Returns:	An output object for the API call

	
UserManager.forgotPassword(req)

	Handles the call to /api/forgot to send a forgot password link

	Arguments:	
	req (object) – A valid request object from express

	Returns:	An output object for the API call

	
UserManager.resetPassword(req)

	Handles the call to /api/reset which will be called when the reset password link is visited
Checking is done to make sure a token exists in a user record.

	Arguments:	
	req (object) – A valid request object from express

	Returns:	An output object for the API call

	
UserManager.updateSettings(req)

	Handles the call to /api/settings/updatesettings which will update the settings for that user
checking for authentication and validating if necessary.

	Arguments:	
	req (object) – A valid request object from express

	Returns:	An output object for the API call

	
UserManager.resetPassword(req)

	Handles the call to /api/settings/changepassword which is almost identical to resetPassword
however it checks for authentication and then changes the password using that user, it doesn’t
take a token though.

	Arguments:	
	req (object) – A valid request object from express

	Returns:	An output object for the API call

	
UserManager.updatePassword(user, password, confirmPassword[, currentPassword])

	Updates a users password, doesn’t bypass any checkings, just doesn’t
define how you select the user, so via a token or direct user object

	Arguments:	
	user (promise) – A valid promise object from isAuthenticated

	password (string) – The new password to set

	confirmPassword (string) – The same password again

	[currentPassword] (string) – The current password

	Returns:	An output object for the API call

	
UserManager.onUserLogin(me[, force])

	An event which is called when a successful login occurs, this logic is kept out of
the handler for /api/login because it’s specific to a different section of the application
which is the networkManager and ircFactory.

	Arguments:	
	me (object) – A valid user object

	[force] (boolean) – Whether to force the reconnect of a disconnected client

	Returns:	void

	
UserManager.parse(file, replace)

	Looks for a template and parses the {{tags}} into the values in replace
and returns a string, used to parse emails. Very basic parsing which will
probably be replaced by something more powerful in the future with HTML outputs.

	Arguments:	
	file (string) – The name of the email template

	replace (object) – A hash of keys and values to replace in the template

	Returns:	A parsed email template

 Copyright 2014, Ricki Hastings.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	IRCAnywhere alpha documentation

 	Server API

WebSocket

(c) 2013-2014 http://ircanywhere.com

Author: Ricki Hastings

IRCAnywhere server/websocket.js

	
class WebSocket.WebSocket(socket)

	Wrapper for sock.js sockets.

	Arguments:	
	socket (object) – A valid sock.js socket

	Returns:	void

	
WebSocket.bindEvents()

	Binds our sock.js events to _socket.

	Returns:	void

	
WebSocket.isValid(parsed)

	Checks if an incoming message object is valid.

	Arguments:	
	parsed (object) – An incoming message object to parse

	Returns:	Whether the object is valid or not

	
WebSocket.onMessage(raw)

	Handles an incoming message.

	Arguments:	
	raw (string) – A raw line from a sock.js websocket

	Returns:	void

	
WebSocket.onClose()

	Handles closing the websocket connection.

	Returns:	void

	
WebSocket.send(event, data[, close])

	Sends outgoing packets

	Arguments:	
	event (string) – The event to send

	data (object) – The data object to send, should be JSON

	[close] (boolean) – Whether to close the connection after the data has been sent or not

	Returns:	void

	
WebSocket.sendBurst(data)

	Compiles a temporary GET route and sends it to a socket

	Arguments:	
	data (object) – The data object to push into a route and send down the socket

	Returns:	void

 Copyright 2014, Ricki Hastings.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	IRCAnywhere alpha documentation

Index

 A
 | C
 | D
 | E
 | I
 | L
 | M
 | N
 | R
 | S
 | U
 | W

A

 	

 	Application.Application() (class)

 	Application.cleanCollections() (Application method)

 	Application.handleError() (Application method)

 	Application.init() (Application method)

 	Application.packagejson (Application attribute)

 	Application.selectCipherSuite() (Application method)

 	

 	Application.setupNode() (Application method)

 	Application.setupOplog() (Application method)

 	Application.setupServer() (Application method)

 	Application.setupWinston() (Application method)

 	Application.verbose (Application attribute)

C

 	

 	ChannelManager.ChannelManager() (class)

 	ChannelManager.getChannel() (ChannelManager method)

 	ChannelManager.insertUsers() (ChannelManager method)

 	ChannelManager.queueJoin() (ChannelManager method)

 	ChannelManager.removeUsers() (ChannelManager method)

 	ChannelManager.updateModes() (ChannelManager method)

 	ChannelManager.updateTopic() (ChannelManager method)

 	ChannelManager.updateUsers() (ChannelManager method)

 	CommandManager._ban() (CommandManager method)

 	CommandManager.away() (CommandManager method)

 	CommandManager.ban() (CommandManager method)

 	CommandManager.close() (CommandManager method)

 	CommandManager.CommandManager() (class)

 	CommandManager.createAlias() (CommandManager method)

 	CommandManager.ctcp() (CommandManager method)

 	CommandManager.cycle() (CommandManager method)

 	CommandManager.init() (CommandManager method)

 	CommandManager.invite() (CommandManager method)

 	CommandManager.join() (CommandManager method)

 	

 	CommandManager.kick() (CommandManager method)

 	CommandManager.kickban() (CommandManager method)

 	CommandManager.list() (CommandManager method)

 	CommandManager.me() (CommandManager method)

 	CommandManager.mode() (CommandManager method)

 	CommandManager.msg() (CommandManager method), [1]

 	CommandManager.nick() (CommandManager method)

 	CommandManager.notice() (CommandManager method)

 	CommandManager.parseCommand() (CommandManager method)

 	CommandManager.part() (CommandManager method)

 	CommandManager.query() (CommandManager method)

 	CommandManager.quit() (CommandManager method)

 	CommandManager.raw() (CommandManager method)

 	CommandManager.reconnect() (CommandManager method)

 	CommandManager.topic() (CommandManager method)

 	CommandManager.unaway() (CommandManager method)

 	CommandManager.unban() (CommandManager method)

 	CommandManager.whois() (CommandManager method)

D

 	

 	disconnectUser() (built-in function)

E

 	

 	EventManager._insert() (EventManager method)

 	EventManager.channelEvents (EventManager attribute)

 	EventManager.determineHighlight() (EventManager method)

 	EventManager.EventManager() (class)

 	

 	EventManager.getEventByType() (EventManager method)

 	EventManager.getPrefix() (EventManager method)

 	EventManager.getUserPlayback() (EventManager method)

 	EventManager.insertEvent() (EventManager method)

I

 	

 	IdentdServer.IdentdServer() (class)

 	IdentdServer.init() (IdentdServer method)

 	IdentdServer.onData() (IdentdServer method)

 	IdentdServer.parse() (IdentdServer method)

 	IRCFactory.create() (IRCFactory method)

 	IRCFactory.destroy() (IRCFactory method)

 	IRCFactory.handleEvent() (IRCFactory method)

 	IRCFactory.init() (IRCFactory method)

 	IRCFactory.IRCFactory() (class)

 	IRCFactory.options (IRCFactory attribute)

 	IRCFactory.send() (IRCFactory method)

 	IRCHandler._formatRaw() (IRCHandler method)

 	IRCHandler.action() (IRCHandler method)

 	IRCHandler.banlist() (IRCHandler method)

 	IRCHandler.blacklisted (IRCHandler attribute)

 	IRCHandler.closed() (IRCHandler method)

 	IRCHandler.ctcp_request() (IRCHandler method)

 	IRCHandler.ctcp_response() (IRCHandler method)

 	IRCHandler.exceptlist() (IRCHandler method)

 	IRCHandler.failed() (IRCHandler method)

 	IRCHandler.invitelist() (IRCHandler method)

 	IRCHandler.IRCHandler() (class)

 	IRCHandler.join() (IRCHandler method)

 	IRCHandler.kick() (IRCHandler method)

 	

 	IRCHandler.list() (IRCHandler method)

 	IRCHandler.lusers() (IRCHandler method)

 	IRCHandler.mode() (IRCHandler method)

 	IRCHandler.mode_change() (IRCHandler method)

 	IRCHandler.motd() (IRCHandler method)

 	IRCHandler.names() (IRCHandler method)

 	IRCHandler.nick() (IRCHandler method)

 	IRCHandler.notice() (IRCHandler method)

 	IRCHandler.opened() (IRCHandler method)

 	IRCHandler.part() (IRCHandler method)

 	IRCHandler.privmsg() (IRCHandler method)

 	IRCHandler.quietlist() (IRCHandler method)

 	IRCHandler.quit() (IRCHandler method)

 	IRCHandler.registered() (IRCHandler method)

 	IRCHandler.topic() (IRCHandler method)

 	IRCHandler.topic_change() (IRCHandler method)

 	IRCHandler.unknown() (IRCHandler method)

 	IRCHandler.usermode() (IRCHandler method)

 	IRCHandler.who() (IRCHandler method)

 	IRCHandler.whois() (IRCHandler method)

 	IRCServer.init() (IRCServer method)

 	IRCServer.IRCServer() (class)

 	IRCServer.onConnect() (IRCServer method)

L

 	

 	loginServerUser() (built-in function)

M

 	

 	ModeParser.changeModes() (ModeParser method)

 	ModeParser.handleParams() (ModeParser method)

 	ModeParser.ModeParser() (class)

 	ModeParser.sortModes() (ModeParser method)

 	Module.bindFunction() (Module method)

 	Module.extend() (Module method)

 	

 	Module.Module() (class)

 	ModuleManager.bindModule() (ModuleManager method)

 	ModuleManager.loadAllModules() (ModuleManager method)

 	ModuleManager.loadModule() (ModuleManager method)

 	ModuleManager.ModuleManager() (class)

N

 	

 	NetworkManager.activeTab() (NetworkManager method)

 	NetworkManager.addNetwork() (NetworkManager method)

 	NetworkManager.addNetworkApi() (NetworkManager method)

 	NetworkManager.addTab() (NetworkManager method)

 	NetworkManager.changeStatus() (NetworkManager method)

 	NetworkManager.connectNetwork() (NetworkManager method)

 	NetworkManager.editNetwork() (NetworkManager method)

 	NetworkManager.editNetworkApi() (NetworkManager method)

 	

 	NetworkManager.flags (NetworkManager attribute)

 	NetworkManager.getActiveChannelsForUser() (NetworkManager method)

 	NetworkManager.getClients() (NetworkManager method)

 	NetworkManager.getClientsForUSer() (NetworkManager method)

 	NetworkManager.init() (NetworkManager method)

 	NetworkManager.NetworkManager() (class)

 	NetworkManager.removeTab() (NetworkManager method)

R

 	

 	RPCHandler.handleAuth() (RPCHandler method)

 	RPCHandler.handleChannelUsersAll() (RPCHandler method)

 	RPCHandler.handleCommand() (RPCHandler method)

 	RPCHandler.handleCommandsAll() (RPCHandler method)

 	RPCHandler.handleConnect() (RPCHandler method)

 	RPCHandler.handleEventsAll() (RPCHandler method)

 	RPCHandler.handleGetEvents() (RPCHandler method)

 	RPCHandler.handleInsertTab() (RPCHandler method)

 	RPCHandler.handleNetworksAll() (RPCHandler method)

 	

 	RPCHandler.handleReadEvents() (RPCHandler method)

 	RPCHandler.handleSelectTab() (RPCHandler method)

 	RPCHandler.handleTabsAll() (RPCHandler method)

 	RPCHandler.handleUpdateTab() (RPCHandler method)

 	RPCHandler.handleUsersUpdate() (RPCHandler method)

 	RPCHandler.init() (RPCHandler method)

 	RPCHandler.onSocketOpen() (RPCHandler method)

 	RPCHandler.push() (RPCHandler method)

 	RPCHandler.RPCHandler() (class)

S

 	

 	ServerSession.debug (ServerSession attribute)

 	ServerSession.handleEvent() (ServerSession method)

 	ServerSession.handleIrcMessage() (ServerSession method)

 	ServerSession.init() (ServerSession method)

 	ServerSession.nick() (ServerSession method)

 	ServerSession.onClientMessage() (ServerSession method)

 	ServerSession.pass() (ServerSession method)

 	ServerSession.privmsg() (ServerSession method)

 	

 	ServerSession.quit() (ServerSession method)

 	ServerSession.sendChannelInfo() (ServerSession method)

 	ServerSession.sendJoins() (ServerSession method)

 	ServerSession.sendPlayback() (ServerSession method)

 	ServerSession.sendRaw() (ServerSession method)

 	ServerSession.sendWelcome() (ServerSession method)

 	ServerSession.setup() (ServerSession method)

 	ServerSession.user() (ServerSession method)

U

 	

 	updateLastSeen() (built-in function)

 	UserManager.forgotPassword() (UserManager method)

 	UserManager.init() (UserManager method)

 	UserManager.isAuthenticated() (UserManager method)

 	UserManager.onUserLogin() (UserManager method)

 	UserManager.parse() (UserManager method)

 	UserManager.registerUser() (UserManager method)

 	

 	UserManager.resetPassword() (UserManager method), [1]

 	UserManager.timeOutInactive() (UserManager method)

 	UserManager.updatePassword() (UserManager method)

 	UserManager.updateSettings() (UserManager method)

 	UserManager.userLogin() (UserManager method)

 	UserManager.userLogout() (UserManager method)

 	UserManager.UserManager() (class)

W

 	

 	WebSocket.bindEvents() (WebSocket method)

 	WebSocket.isValid() (WebSocket method)

 	WebSocket.onClose() (WebSocket method)

 	WebSocket.onMessage() (WebSocket method)

 	

 	WebSocket.send() (WebSocket method)

 	WebSocket.sendBurst() (WebSocket method)

 	WebSocket.WebSocket() (class)

 Copyright 2014, Ricki Hastings.
 Created using Sphinx 1.3.5.

 _static/comment-close.png

_static/down.png

_static/down-pressed.png

_static/comment.png

_static/plus.png

search.html

 Navigation

 		
 index

 		IRCAnywhere alpha documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014, Ricki Hastings.
 Created using Sphinx 1.3.5.

_static/minus.png

_static/file.png

_static/ajax-loader.gif

_static/up-pressed.png

_static/comment-bright.png

_static/up.png

